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Abstract

Structural variations (SVs) in repetitive sequences could only be detected within a broad region due to imprecise breakpoints, leading
to classification errors and inaccurate trait analysis. Through manual inspection at 4532 variant regions identified by integrating 14
detection pipelines between two tomato genomes, we generated an SV benchmark at base-pair resolution. Evaluation of all pipelines
yielded F1-scores below 53.77% with this benchmark, underscoring the urgent need for advanced detection algorithms in plant
genomics. Analyzing the alignment features of the repetitive sequences in each region, we summarized four patterns of SV breakpoints
and revealed that deviations in breakpoint identification were primarily due to copy misalignment. According to the similarities among
copies, we identified 1635 bona fide SVs with precise breakpoints, including substitutions (223), which should be taken as a fundamental
SV type, alongside insertions (780), deletions (619), and inversions (13), all showing preferences for SV occurrence within AT-repeat
regions of regulatory loci. This precise resolution of complex SVs will foster genome analysis and crop improvement.

Introduction
Structural variations (SVs) are genomic alterations that can
significantly influence phenotype by disrupting gene function
or expression through alterations in regulatory elements or the
three-dimensional (3D) structure [1, 2]. In plants, SVs play a
significant role in responses to environmental stimuli and have
a substantial impact on both yield and quality [3–5]. Therefore,
given the importance of SVs, it is essential to deepen our under-
standing of their structure, prevalence, and the mechanisms by
which they were involved in biological processes [6].

Currently, long-read-based algorithms for detecting SVs in
genomes, including both de novo assembly and alignment-
based methods, utilize diverse strategies such as identifying
divergent alignments, junction-spanning sequences, clipped
reads, and sequence clustering within specific genomic regions
[7–10]. However, these methods may introduce biases due to the
polymorphic, chimeric, and heterogeneous nature of sequences
surrounding breakpoints, complicating the integration of SVs
across multiple samples [11–14]. Consequently, attaining base-

pair resolution for every SV remains challenging, thereby limiting
our understanding of underlying biases [15].

Classifying SV types, such as deletions, duplications, insertions,
inversions, and translocations, is theoretically straightforward;
however, their practical categorization remains challenging [16].
For instance, distinguishing between duplications and insertions
is often difficult due to potential alignment errors inherent in
detection methodologies [17]. Additionally, the presence of com-
plex genomic regions, such as homopolymers, segmental duplica-
tions, tandem repeats, and satellite DNA, further complicates this
process [18, 19]. Therefore, treating SVs as single events in these
regions makes interpreting the full scope of genetic information
difficult, as the practical alignment results often obscure the
repetitive sequence features [20]. This challenge is particularly
evident in plant genomes, where repetitive sequences make up
35% to 90% of the genome, with polyploid species exhibiting highly
repetitive regions that further complicate SV identification [21,
22]. Moreover, current variant benchmark sets exclude many of
these regions, causing the performance of detection algorithms
to be generally overestimated, highlighting the critical need for
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Figure 1. Challenges in the identification of complex SVs. A The distribution of repetitive sequences, gaps, and CSEs in the assembled genome.
Repetitive sequences encompass tandem repeats and transposons. Gaps on the chromosome are indicated by squares, while CSEs are represented by
triangles. B Inaccurate and false-positive SVs were identified in repetitive regions. The SVs detected by the callers, which conflicted with read
alignments during visualization, revealed three distinct scenarios: (1) cases where no actual variants were present, yet deletions (DEL) were incorrectly
identified (highlighted as false positive SVs); (2) regions where the entire area was misclassified as a single inversion (INV); and (3) regions where
multiple types of SVs—such as INV, duplication (DUP), DEL and insertion (INS)—were detected by different callers, leading to conflicting
interpretations. This figure is a schematic summary based on visual observations, with the histogram in the bottom-right corner illustrating the
simulated distribution of sequencing coverage (mean depth is 10×). C The strategy for resolving complex SV identification. Firstly, SV loci identified by
callers in similar regions using two methods were combined into a single SV region. Subsequently, manual analysis of repetitive sequence features
through genome alignment helped determine SV boundaries and breakpoints in both genomes, facilitating the classification of SV types.

a more comprehensive and standardized benchmark to evaluate
variant detection methods accurately.

In this study, we manually characterize complex SVs at base-
pair resolution between two tomato genomes to shed light on
the nature of SVs across boundaries, breakpoints, and types. This
research aims to establish an SV benchmark for plant genomes
and enhance our understanding of repetitive sequences involved
in complex SVs.

Results
Assembly of a high-quality tomato genome
Achieving a comprehensive understanding of complex SVs
necessitates high-quality genome assemblies. By manually
integrating results from three de novo assembly algorithms,
we generated a high-quality genome for the cultivated tomato
VF36, with a quality value (QV) of 63.895 (see Materials and
methods, Supplementary Table S1 and Supplementary Fig. S1).
The assembly consisted of 44 contigs, totaling approximately
798.8 Mb, with a contig N50 size of 43.36 Mb, which is about

seven times larger than that of the reference genome Heinz
1706 [23] (SL4.0 contig N50 5.5 Mb) (Supplementary Table S2).
Notably, the assembly contains only 32 gaps, primarily in
regions rich in repetitive sequences (Fig. 1A), indicating high
contiguity. We further validated the assembly’s accuracy using
the CRAQ method [24], based on re-mapping long and short
reads (Supplementary Fig. S2). A genome-wide assessment
revealed only eight large-scale clip-based structural errors
(CSE) (S-AQI score of 99.00), distributed across chromosomes
Chr01 (3), Chr03 (2), Chr04 (1), Chr09 (1), and Chr11 (1) (Fig. 1A,
Supplementary Tables S3 and S4 and Supplementary Figs S3–S8).
Overall, these results suggested that our assembly provided a
robust foundation for detecting and analyzing SVs in tomatoes
(Supplementary Fig. S9).

Overview of complex SVs
In the absence of an algorithm capable of precisely localizing
all SVs, we employed a total of 14 algorithms for SV detection
between VF36 and SL4.0 (see Materials and methods and
Supplementary Fig. S10), and identified 32 128 redundant SV loci
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Figure 2. Complexity in determining SV boundaries. A The issue of copy number discrepancies. The segments of S1 and S2 are present as two copies,
each in both the reference (REF) and query (QRY) genomes. However, all copies in the query genome align exclusively to a single copy in the reference
genome, leading to false-positive SVs detected by callers. B Misdetection of SVs due to reverse-aligned sequences across the genome. The sequences at
the start (10 kb; rhomboids on left-side) and end (10 kb; rhomboids on right-side) of an SV region from 5.94 to 64.97 Mb on Chr09 exhibited widespread
alignment across the entire Chr09 in the query genome. Numerous segments on both sides aligned in reverse orientation, leading to erroneous
detection as an inversion (INV). However, the best alignments for these two 10 kb sequences are in the forward orientation (triangles). C Misalignment
of repetitive sequences. The SV region contains multiple copies with segments of S1, S2, and S3 in both genomes. The absence of one S2 copy in the
reference genome results in incorrect alignments of these copies, leading to the erroneous detection of insertions (INSs) and deletions (DELs).

(Supplementary Tables S5-S6). Following initial length and quality
filtering, each SV locus was visually inspected using Samplot [25]
and IGV [26], and manually consolidated into 4532 SV regions (see
Materials and methods and Supplementary Table S7). The results
showed consistent SV detection across non-repetitive regions by
various callers, but detection varied significantly in repetitive
regions (Fig. 1B). In these repetitive areas, the SV positions
identified by the software often conflicted with those observed in
the read alignments (Supplementary Figs S11–S13). Additionally,
in highly repetitive regions where multiple SVs clustered together,
different callers interpreted these clusters as single SVs or
detected only parts of the variant sequence, leading to mixed
reports of insertions, deletions, duplications, or inversions
(Supplementary Figs S14 and S15).

Upon visualizing all SV loci, we identified three primary chal-
lenges in detecting complex SVs: inaccuracies in pinpointing SV
regions, difficulty in determining precise start and end positions
at base-pair resolution, and inconsistencies in defining different
SV types. To address these issues, we performed an analysis
focusing on SV boundaries, breakpoints, and types in relation to
genome sequence features (Fig. 1C).

Determination of SV boundaries
A key challenge in accurately identifying SVs is determining
their precise boundaries. Through manual inspection of 4,532 SV
regions based on the alignment of two genomes, we identified
three recurring scenarios that underscore the complexities in
defining these boundaries (Supplementary Figs. S16–S17).

Firstly, there was an issue with copy number discrepancies
(2026/4532), where multiple copies were present in both the ref-
erence and query genomes, but all copies in the query genome
aligned to the same position in the reference genome, falsely indi-
cating a deletion or insertion (Fig. 2A and Supplementary Fig. S22).
Secondly, SVs could be misidentified due to sequences aligning in
reverse orientation across the genome, leading to falsely detected
large-scale SVs (87/4532) (Fig. 2B and Supplementary Fig. S23).

For instance, a single SV misreported by Sniffles [11] spanned
a large portion of a chromosome (5.94 to 64.97 Mb, covering
86.16% of Chr09). The third scenario involved the misalignment
of repetitive sequences (2129/4532), where different copies were
incorrectly paired, causing boundary shifts and erroneous SV
calls (Fig. 2C and Supplementary Fig. S24). Additionally, 290 SV
regions were located in highly complex genomic areas, displaying
combinations of these issues.

All the aforementioned scenarios suggest that repetitive
sequences were responsible for the mapping noise, making the
precise detection of SVs dependent on the accurate alignment of
these sequences. Instead of focusing solely on aligning repetitive
sequences, our approach prioritized identifying uniquely aligned
sequences (UAS) adjacent to repetitive regions in both the query
and reference genomes (Fig. 3A and Supplementary Figs S18–S21).
After precisely defining the UAS, we manually inspected repetitive
regions, including complex areas resembling ‘tyfonas’ found in
human cancer samples [27]. For instance, we analyzed a tyfonas-
like SV region between 9.59 and 11.18 Mb on reference Chr01.
Within this 1.59 Mb segment, various callers initially identified
289 SV regions. However, through manual inspection using 15–
30 kb UAS, we observed that this region exhibited all three
previously described scenarios (Supplementary Table S8 and
Supplementary Figs S25–S29). The region contained 16 192 small
fragments forming fold-back alignments, each up to 252 bp long,
capable of aligning in reverse in both genomes. These fragments
could junction with their copies and potentially overlap with
other segments, contributing to the highly repetitive nature of the
sequences. This abundance of similar sequences led to alignment
errors, causing callers to mistakenly identify these misalignments
as SVs. Ultimately, we accurately defined three distinct SV regions
with specific boundaries: 6160 bp (10 406 708–10 412 867 bp), 45 bp
(10 439 305–10 439 349 bp), and 4866 bp (10 548 931–10 553 798 bp)
(Fig. 3B). Thus, the use of UAS not only reduces the impact of
repetitive sequences, but also enhances the accuracy of detecting
complex SVs through manual inspection.
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Figure 3. Approach for determining SV boundaries. A The pipelines for determining boundaries. For an SV region located on Chr05, the alignment of
two genomes revealed multiple repetitive segments. SV boundaries were determined by extending 20 kb upstream and 10 kb downstream in the
reference genome, and 5 kb upstream in the query genome. The length of the extension was based on UAS identification. B Tyfonas-like region was
identified through manual inspection. Numerous alignment segments in forward (539 segments, denoted by “+” rhomboids) and reverse (16 K
segments, denoted by “-” rhomboids) orientations were observed in the tyfonas-like region on Chr01. Three SV regions with different repetitive
sequences were identified, each with clear boundaries determined after manual inspection.

Base-pair resolution of SV breakpoints
After determining the UAS, we manually assessed the breakpoints
of SVs at base-pair resolution, identifying a total of 1635 SVs.
Identifying the positions of breakpoints was straightforward when
the sequences were uniquely present in both the reference and
query genomes within the SV regions (720/1635) (Fig. 4A and
Supplementary Fig. S30). However, determining breakpoints at
base-pair resolution became more challenging when repetitive
sequences were involved in the SVs (915/1635).

We categorized the repeats into three types during the manual
inspection of breakpoints. The first category included unique
sequences inserted between two copies or directly connected
copies in the query genome, with only one corresponding copy
in the reference genome, and vice versa (417/915) (Fig. 4B and
Supplementary Fig. S31). The second category involved a single
copy with one or more potentially overlapping segments, present
once in one genome but multiple times in the other (203/915)
(Fig. 4C and Supplementary Fig. S32). The third category consisted
of multiple distinct copies with one or more segments found in
both genomes (295 out of 915), often characterized by the frequent
occurrence of tandem repetitive sequences (46.8%) (Fig. 4D).

It was also observed that complex genomic regions often
displayed multiple categories of SV breakpoints. A notable
example occurred between 47.84 and 47.88 Mb on Chr02, where
nine callers reported 28 SV loci collectively. After manually
defining the SV boundaries (47.83–47.88 Mb, covering 41.3 kb),
we identified five overlapping alignment segments (S0: 11.9 kb,
S1: 12.5 kb, S2: 14.9 kb, S3: 14.5 kb, S4: 12.1 kb) within this
genomic region (Fig. 4E). Upon resolving the multiple alignments
among these segments, we identified two distinct SVs: one with
breakpoints at 47 848 244–47 848 246 bp involving a substitution

(3 bp in the reference genome and 504 bp in the query genome),
and another at 47 863 185 bp involving an insertion (7476 bp)
(Supplementary Figs S33 and S34).

Definition of SV types
The ambiguous definition of SVs, which is often based on copy
number, orientation, or the presence/absence of large genomic
sequences, frequently results in discrepancies among callers. For
example, copy number variations (CNVs) can sometimes be mis-
interpreted as insertions. To accurately categorize and convey
information about complex SVs, we simplified SV classifications
into four basic categories based on sequence features: insertion
(INS), deletion (DEL), inversion (INV), and substitution (SUB).

INS and DEL refer to the presence and absence of sequences in
the query genome compared to the reference genome. Among the
1635 SVs analyzed, the most common types were INSs (780/1635)
and DELs (619/1635). While some INSs and DELs were found in
simple regions, the majority (60.5%) were influenced by repeti-
tive sequences, either through shared sequence segments with
differing copy numbers between the genomes (Fig. 5A) or through
varying copies of multiple segments (Fig. 5B). As a result, these
variations were sometimes referred to as duplications (DUPs)
or CNVs. However, the definitions of DUPs or CNVs often fail
to accurately describe the true nature of these variations. For
instance, when SVs involve copies containing multiple segments,
classifying them as INSs and DELs allowed us to identify the
specific segments and copies that form the variant sequences
across different genomes, thereby clarifying the repeat patterns
of these segments (Supplementary Figs S35 and S36). In contrast,
DUPs and CNVs represent entire regions with multiple segments
without this level of detailed resolution.
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Figure 4. Categories of repetitive sequences for identifying SV breakpoints. A SV breakpoints (arrows) were identified when there were no repeats
between upstream and downstream UAS. B Two copies of a segment (represented by rectangles) in the reference genome are joined with a unique
sequence that is aligned to a single copy in the query genome. Multiple positions across copies are observed as potential breakpoints (dotted arrows). C
A single copy with three segments (S1, S2, and S3) in the reference genome but two copies in the query genome, which may overlap each other. The
increased complexity of these repeats raised the number of potential breakpoints. D Multiple distinct copies with three segments (S1, S2, and S3) are
present in both genomes. The multiple alignments among these copies resulted in numerous potential breakpoints. E Identifying a complex region on
Chr02 revealed multiple categories. Five segments (S0, S1, S2, S3, and S4) were aligned in this SV region. Since S4 is a sub-segment of S2 and overlaps
only with S3, one copy of S4 was removed from the query genome to minimize the impact of repeats. Six sub-segments were identified by analyzing
the overlapping segments to construct the remaining five segments. Ultimately, two SVs at base-pair resolution were identified.

The definition of an INV is straightforward, but identifying
INVs is challenging, primarily due to the presence of extensive
repetitive sequences [28]. We classify a variation as INV if it meets
the following three criteria: the adjacent sequences on both sides
of an INV must be forward-aligned between the reference and
query genomes; the inverted sequences should be reciprocally the
best match; and there should be no assembly gap in the inversion
region (Fig. 5C). Based on these criteria, our analysis identified a
total of 13 INVs across six chromosomes (Supplementary Figs S37
and S38).

SUB refers to segments in the reference and query genomes
that differ and remain unaligned (Fig. 5D). However, this type of SV
typically goes unnoticed due to the difficulty of detecting them at
base-pair resolution. Through manual inspection, we found that
SUBs (223/1635) likely result from recurrent deletions or inser-
tions in one genome, leading to significant sequence differences
and complicating the accurate mapping of reads or alignment
of genomes (Supplementary Figs S39 and S40). Therefore, SUBs
represent a key type of SV in pairwise comparisons. While an SUB
identified between two samples may appear as an INS or DEL
in a population-wide alignment with other samples, accurately
detecting these variations requires sufficient population data. As
a result, some variants are classified solely as SUBs due to limited
information (Fig. 5E). Once population-level assemblies become
available, constructing an accurate pangenome graph will require

distinguishing which samples classify the same SV as a SUB
versus those classified as an INS or DEL. Integrating this detailed
genomic information will enhance the precision of phylogenetic
analyses in evolutionary studies.

Defining the four types of SVs based on sequence character-
istics improves clarity, but these definitions may not fully cap-
ture their biological implications. To address this, our benchmark
set provided detailed information for each SV, including break-
points, types, and the unique alignment sequences from both the
upstream and downstream regions in both genomes. This com-
prehensive representation aims to facilitate their use in biological
studies (Supplementary Table S9 and Supplementary Fig. S43).

Evaluation of callers with SV benchmark
The primary function of the benchmark is to evaluate the per-
formance of different approaches, providing guidance for the
development of new algorithms. Currently, the benchmark set of
SVs is limited, particularly in its applicability to plant genomes.
Therefore, our SV benchmark set allows for more precise compar-
isons of variant callers.

We assessed all 14 detection pipelines based on two distinct
criteria. Under the strictest condition, the identified SV loci iden-
tified by callers were required to match the benchmark SVs, with
no deviation allowed. The results were striking, five pipelines
exhibited no overlap with the benchmark set, while the remaining
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Figure 5. Defining of SV types. A INS and DEL in repetitive regions were identified by the presence of shared sequence segments in both genomes with
differing copies. B Identification of INS and DEL in complex regions. A multiple segment consisting of four small segments has two copies (Copy1 and
Copy2) in the query genome. An insertion (INS) is identified when the Copy1 junctions with a unique sequence in the query genome, whereas a
deletion (DEL) is recognized when a unique sequence junction with a single copy of small segments in the reference genome. C The criteria for
identifying INVs are as follows: Forward alignment of adjacent sequences is observed as UAS. A reverse-oriented alignment was excluded due to lower
similarity (90% compared to 99% in the forward orientation). Two INVs were identified without any gap sequences. Additionally, INSs and DELs were
frequently detected alongside INVs within the same structural variant regions. D Definition of SUBs: two segments (S1 and S2) in the reference
genome, along with two copies of a segment (S3) in the query genome, could not be fully aligned. Consequently, they were categorized as SUBs, with
potential alignment occurring in shorter sequences. E The importance of SUBs in population genomics. Four individual genomes exhibit varying
numbers of three specific segments (S1, S2 and S3; S4 and S5 are the copies of S3 and S1, respectively), leading to structural variations (SVs) such as
insertions (INSs), deletions (DELs), and substitutions (SUBs) when comparing genome pairs. By constructing these SVs into a graph-based pangenome,
we can effectively represent genetic diversity as insertions or deletions across multiple samples.

pipelines demonstrated precision rates ranging from 0.04% (SyRI)
to 2.56% (SVMU) and recall rates ranging from 0.06% (SyRI) to
2.08% (SVMU) (Fig. 6A). When we relaxed the criteria to allow for a
50-bp deviation from the benchmark and 90% similarity for SV loci
to be considered true SVs, the highest precision achieved was only
52.22% (Sniffles with NGMLR) and the highest recall rate reached
65.02% (Anchorwave) (Fig. 6A). In addition, under the relaxed cri-
teria, the overall best performance yielded an F1-score of 53.77%
(Sniffles with NGMLR), and no significant differences were found
between assembly-based and alignment-based callers.

Overall, since our SV benchmark includes numerous repetitive
regions, we observed that these SV callers—developed based on
human data—exhibited significantly lower performance metrics
on the tomato genome compared to the human genome. When
allowing a deviation of up to 1 kb between detected SVs and the
benchmark set, previously reported F1-scores typically reported
ranged from 0.6 to 0.9 with third-generation sequencing data [29].
However, under the same conditions, our evaluation showed that
the highest F1-score achieved was only 53.77%. This highlights the
urgent need for highly accurate callers, capable of effectively han-
dling repetitive sequences in complex genomes, such as those of
plants, while following a consistent standard to facilitate progress
in breeding efforts.

Functional analysis of SVs
SVs can directly impact phenotypes. For example, previous
research has shown that a rare substitution in the promoter
region of the TomLoxC gene affects tomato flavor by altering

apocarotenoid production [30]. However, another study identified
a duplication at the TomLoxC locus, highlighting the complexity
of this genomic region beyond what is currently understood
[31]. To explore this further, we manually validated this SV
using 25 assemblies from the published tomato pangenome [32]
(Supplementary Table S10).

We identified variations in seven samples within the gene
and promoter regions compared to the reference genome, includ-
ing four currant (TS22, TS265, TS413, and TS421), one cherry
(TS623), and two cultivated (TS12 and TS331) tomato genomes
(Supplementary Tables S11 and S12). In contrast to the previously
identified substitution (reference allele 4724 bp, non-reference
4151 bp), located 149 bp upstream of the transcription start site
(TSS), our results revealed that all samples except TS12 contained
a 15 kb insertion (INS1), a substitution (SUB1, with 1 bp in the
reference and 699–711 bp in samples), and a 133 bp insertion
(INS2) within the region from 4325 to 4743 bp upstream of the TSS
on the reference genome. Both SUB1 and INS2 were encompassed
within the previously identified reference allele. Interestingly,
these two SVs in the query genomes did not correspond to the
non-reference allele sequence. However, INS1 was located 2 bp
upstream of the reference allele, overlapping with both the non-
reference allele and part of the query genome sequence (Fig. 6B).

Furthermore, INS1 contains a copy of the TomLoxC, as evi-
denced by seven segments originating from the gene region.
This copy was absent only in sample TS12, which led to the
discovery of four new SVs in the promoter regions. Samples
TS413 and TS265 showed two additional INSs: one measuring
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Figure 6. The functionality of SVs. A The performance of different SV callers with SV benchmark, evaluated under two conditions using three metrics.
B The new understanding of SVs in the TomLoxC. Alignment between the currant tomato TS22 genome and the reference genome revealed two
insertions (INS1 and INS2) and one substitution (SUB1) promoter region, along with one substitution (SUB2), one insertion (INS3), and two deletions
(DEL1 and DEL2) in the gene region. Another copy of TomLoxC in the query genome is located within INS1. The rare substitution in the promoter region
is marked with dotted-line rectangles [30]. C The frequency of SVs occurring in intragenic, intergenic, and regulatory regions. The relative rate was
calculated by comparing the proportion of SVs present in each region to the proportion of that region within the entire genome. D The sequence motif
enrichment preference in the 50 bp region around SV breakpoints. E The function enrichment analysis of the genes overlapping with SVs.
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19 kb and the other 327 bp. Across all samples we identified
seven distinct SVs in the gene region across all samples, includ-
ing one SUB, two INSs, and four DELs. In total, we identified
16 new SVs within the TomLoxC region, providing a foundation
for future genome-wide association studies on tomato flavor
(Supplementary Figs S44–S51).

To explore the potential mechanisms behind SV formation, we
analyzed the functional features of breakpoints and found that
SV occurs more frequently in gene regulatory regions (relative
enrichment of 1.48) compared to gene bodies (0.97) and intergenic
regions (0.74) (Fig. 6C). Sequence motif analysis within 50 bp of
the breakpoints revealed a preference for SV occurrence in AT-rich
regions (Fig. 6D). Additionally, we identified 477 genes overlapping
with 1635 SVs in both genomes. Gene ontology (GO) analysis
showed that these genes were enriched in processes related to
defense responses (Fig. 6E). These findings suggest that SVs pre-
dominantly affect gene regulatory regions and may play a role in
adaptation mechanisms.

Discussion
Through manual correction of the copy alignment between
two cultivated tomato genomes, we curated an SV benchmark
resolved at the base-pair level and uncovered the challenge
of detecting SVs in repetitive regions. To address current
inconsistencies in SV classification, we proposed four basic
SV types based on sequence features as a robust standard,
which can be easily integrated into a pangenome graph. Notably,
substitutions may play a key role in population-level analyses
due to their potential involvement in flexible classification as
insertions or deletions across different samples.

Our benchmark revealed an underlying issue. While several
functional SVs identified in previous research appear to support
the accuracy of current detection methodologies, genome-wide
detection still includes a substantial number of false identifica-
tions. Even with our manual inspection, undetected false-negative
SVs and erroneous detections may still persist. These limitations
primarily originate from three factors. First, our inspection relies
on data generated by existing SV callers, inherently leading to
the omission of regions where no variations were reported. Sec-
ond, current alignment tools remain imperfect, making it dif-
ficult to fully correct alignment-induced errors. This challenge
is particularly pronounced in repetitive sequences, especially in
tandem repeat regions, where complexity often leads to ambigu-
ous identification of repetitive units (Supplementary Figs S41
and S42). Third, although we excluded regions with known large-
scale assembly errors and gaps, unidentified assembly inaccura-
cies may still influence the accuracy of SV identification, which
is based on genome-to-genome alignments.

Additionally, our research focused on a single tomato sample
closely related to the reference genome, leaving the exploration of
special SV regions in populations and other species unaddressed.
Furthermore, our proposed manual process is not scalable for
large population analyses. We anticipate these limitations to be
mitigated by future advancements in next-generation aligners
and deep-learning-based SV algorithms, which could directly con-
struct a reference-level pangenome graph encompassing all vari-
ants from multiple genomes within a species. Our benchmark
dataset represents a valuable resource for training artificial intel-
ligence algorithms, offering the potential to enhance the accuracy
of SV detection. Moreover, key strategies from our manual inspec-
tion pipeline, such as employing UAS to confirm SV boundaries
and utilizing copy similarity for breakpoint identification, could

also inform the development of advanced computational method-
ologies for SV analysis.

The precise resolution of SVs at the base-pair level provides
invaluable insights into their inherent characteristics, including
the surrounding sequences and their potential biological impacts.
The establishment of standardized classifications aids in achiev-
ing consistency in detection algorithms, thereby improving SV
benchmarks and facilitating the sharing of SV databases within
plant genomics. In the future, we anticipate that advancements
in SV detection algorithms will enable the accurate identification
of SVs at the population level, facilitating a comprehensive under-
standing of how SVs influence growth, development, and adaptive
evolution.

Materials and methods
Plant materials and sequencing
The cultivar tomato VF36 was utilized for high-fidelity (HiFi) long-
read sequencing with the PacBio sequel II platform in the circu-
lar consensus sequencing (CCS) model [33]. DNA samples were
extracted from fresh leaves of VF36 seedlings. The sequencing
library was prepared using an SMRT bell kit, incorporating an
11.5-kb insertion fragment length. Sequencing was conducted
on the PacBio Sequel II instrument using the SMRT Cells 8 M
chip. The raw reads were processed into HiFi reads using CCS
software (v.3.4.1) (https://github.com/PacificBiosciences/ccs) with
parameters ‘–minQ = 0.99 and –min-pass 3’.

Genome assembly
Three different algorithm-based assemblers HiCanu (v.2.1.1) [34]
with the option ‘correctedErrorRate = 0.01’, Flye (v.2.6-release)
[35] with the parameters ‘–genome-size = 800000000, –min-ovlp
= 5000, and –kmer = 17’, and Hifiasm (v.0.13) [36] with ‘-l = 0’,
were employed to assemble the VF36 genome. Subsequently, the
contigs were anchored to chromosomes using RagTag (v.2.0.0) [37]
with the default parameters. Finally, to facilitate the visualization
of complete chromosomes, assembled contigs were integrated
and optimized using Genome Puzzle Master (GPM) [38].

Assembly evaluation
The completeness of the assembled genome was assessed using
BUSCO (v.5.3.2) [39] with the parameters ‘solanales_odb10 -m =
genome –cpu = 64 –offline’. Genome coverage and accuracy were
assessed with Merqury (v.1.4.1) [40] based on k-mer statistics with
default parameters. Base-pair level assembly errors for the VF36
genome were examined using CRAQ (v.1.0.9) [24], employing both
short and HiFi reads. Errors and heterozygous sites were distin-
guished by the ratio of alignment coverage to effective clipped
reads, classifying errors into clip-based regional errors (CREs)
or large-scale clip-based structural errors (CSEs). Two assembly
quality metrics, R-AQI and S-AQI, were used to provide insights
into the accuracy of the assembled genome at various levels.

Repetitive sequences identification
Repetitive sequences were identified in both the reference and
query genomes to enhance genome annotation and SV calling.
Tandem Repeat Finder (v.4.09) [41] with the parameters ‘2 7 7
80 10 50 500 -f -d -m’ was employed to detect all repetitive
sequences. Transposable elements (TEs) were annotated using
the EDTA pipeline (v.2.1.1) [42] with the ‘—curatedlib’ parameter,
which incorporates additional SINE/LINE databases (https://sines.
eimb.ru/) to improve the completeness of TE annotations.
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Genome annotation
Protein-coding genes were predicted using the MAKER2 pipeline
(v.2.31.9) [43]. Transcriptome quality was controlled using
FastQC (v.0.12.1) (https://www.bioinformatics.babraham.ac.uk/
pro-jects/fastqc/) with default parameters. RNA evidence was
gathered by aligning reads to the repeat-masked assembly
using HISAT2 (v.2.2.1) [44]. StringTie (v.2.2.1) [45] was then
utilized for transcriptome splicing and integration. Gene structure
prediction was conducted through two rounds of training using
SNAP (v.2013-02-16) [46], followed prediction with AUGUSTUS
(v.3.4.0) [47] utilizing the ‘tomato’ model. Homology-based
predictions employed protein sequences from the cultivated
tomato Heinz 1706 ITAG4.0 database (ftp://ftp.sol-genomics.net/
tomato_genome) and the SwissProt (Viridiplantae) (https://www.
uniprot.org). The integrated model with annotation edit distance
(AED) values below 0.5 were retained. During the EVM integration
of gene prediction results, different weights were assigned to
transcriptome evidence, protein evidence, and de novo prediction
outcomes.

SV loci detection
We implemented two distinct methodologies to identify SVs
from the query genome. For SV calling with HiFi reads, pbmm2
(v.1.1.0) (https://github.com/PacificBiosciences/pbmm2) and
NGMLR (v.0.2.8) [11] were utilized to map HiFi reads to the
reference genome with parameters ‘–unmapped –preset CCS -
N 2’ and default settings, respectively. Subsequently, five read-
alignment-based SV callers, PBSV (v.2.4.0) (https://github.com/
Pacific-Biosciences/pbsv), SVIM (v.1.4.2) [17], Sniffles (v.1.0.12)
[11], cuteSV (v.1.0.10) [14], and SVision (v.1.3.6) [48], processed
the alignments from the mappers to call SVs. The assembled
query genome was aligned to the reference genome using LASTZ
(v.1.04.10) [49] nucmer (v.4.0.0) [50], and minimap2 (v.2.17) [51]. For
the assembly-alignment-based methods, SyRI (v.1.3) [52] was used
to detect SVs from the minimap2 alignment, with anchors lifted
over from the same alignment and SVs subsequently identified
by AnchorWave (v.1.1.1) [53]. Additionally, SVMU (v.0.4) [6] and
Assemblytics (v.1.2.1) [54] were applied to interpret the results
from nucmer and LASTZ alignments.

SV loci filtering and visual inspection
We retained only the SV loci flagged as ‘PASS’ or ‘PRECISE’ by
certain callers, and all loci with variant lengths exceeding fifty
base pairs. Following initial filtering, two visualization tools,
Integrative Genomics Viewer (IGV, v.2.10.2) [26] and Samplot
(v.1.1.6) [25], were employed for further examination of the SV
loci. IGV showed read alignments from both mappers, facilitating
the observation of depth distribution and the sequence changes in
insertions or deletions for each variant. Samplot provided addi-
tional insights into inversions and duplications. Consequently,
all filtered SV loci were visually inspected and categorized
into insertion, deletion, inversion, and complex SVs involving
multiple types. False-positive SV loci were excluded from
the analysis.

SV region merging
After applying a visual filter to all SV loci, redundancy was
addressed manually. Variants within a 500 bp range were initially
consolidated into a single SV region. For longer SV loci potentially
containing other SV loci, a length threshold of over 20 kb was
temporarily applied for unmerging. Precision in defining SV

regions was further enhanced through manual inspection, with
the goal of continuously merging adjacent ranges.

UAS anchor
Manual inspection of base-pair resolution SVs relies on infor-
mation from two genomes, making it crucial to first identify
the SV regions in the query genome. The reads mapped to the
merged SV regions in the reference genome were extracted using
SAMtools (v.1.9) [55] and then realigned to the query genome by
either pbmm2 or NGMLR. Subsequently, the SV regions in both
genomes were aligned using MUMmer (v.4.0.0) [50] in ‘dnadiff’
or ‘mummer’ mode with default parameters. The alignments
were visualized through manually analyzed or gnuplot (v.5.4) [56],
which facilitated the determination of the necessary length of
extension or contraction for the SV regions across both genomes,
thereby identifying the UAS.

SV breakpoint identification
To achieve base-pair resolution breakpoints, we initially per-
formed a manual inspection of complex repetitive sequences
within SV regions with accurate boundaries, resulting in
multiple segments with multiple copies. LASTZ with default
parameters was used to confirm the precise positions of all
copies. Additionally, the segment units of tandem repeats were
identified using blastn (v.2.5.0) [57]. MUMmer was then utilized to
calculate the similarity between copies in both genomes, focusing
on detecting small variants. Copies showing the highest similarity
in alignment were designated as UAS, while the remaining copies
were identified as SVs.

Evaluation of all detection pipelines
We utilized filtered SV loci from all detection pipelines to evaluate
their performance. The datasets from SVision, SVMU, Assemblyt-
ics, and SyRI were first normalized into a standard VCF format.
All datasets were then sorted and compressed using BCFtools
(v.1.8) [58] and indexed with tabix (v.1.3.1) [59]. Additionally, our
SV benchmark was converted into VCF format. Truvari (v.4.1.0)
[60] was employed to evaluate performance using the strict
parameters ‘–pctseq=0 –sizemax 30000000 –sizemin 1 –refdist 0
–pctsize 1 –pctovl 1’ and relaxed parameters ‘–pctseq=0 –sizemax
30000000 –sizemin 1 –refdist 50 –pctsize 0.9 –pctovl 0.9.’ and ‘–
pctseq=0 –sizemax 30000000 –sizemin 1 –refdist 1000 –pctsize
0.9 –pctovl 0.9.’.

The functional features of SV breakpoints
We extracted upstream and downstream sequences ranging from
1 bp to 50 bp for each breakpoint. MEME (v.4.12.0) [61] was used
to analyze sequence motifs of these sequences with the options
‘-nmotifs = 10 -minw = 2 -maxw = 10’. Furthermore, we assessed
the genomic regional preferences of SV occurrences by converting
the base pairs at breakpoints into SNPs. These SNPs were then
annotated in genic, intergenic, and regulatory regions using snpEff
(v.5.2) [62] with default settings.

Functional analysis of SVs
Bedtools (v.2.29.1) [63] was employed to identify genes overlapping
with SVs in both the reference and query genomes using the ‘-wb’
parameter. Subsequently, GO [64] and KEGG [65] pathway analyses
were performed to elucidate the biological processes, molec-
ular functions, and cellular components associated with the
identified genes.
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