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Chromosome-scale and haplotype-
resolved genome assembly of 
the autotetraploid Misgurnus 
anguillicaudatus
Bing Sun1,3, Qingshan Li1,3, Yihui Mei1, Yunbang Zhang1, Yuxuan Zheng1, Yuwei Huang1, 
Xinxin Xiao1, Jianwei Zhang2, Gao Jian1 ✉ & Xiaojuan Cao   1 ✉

In nature, diploids and tetraploids are two common types of polyploid evolution. Misgurnus 
anguillicaudatus (mud loach) is a remarkable fish species that exhibits both diploid and tetraploid 
forms. However, reconstructing the four haplotypes of its autotetraploid genome remains unresolved. 
Here, we generated the first haplotype-resolved, chromosome-level genome of autotetraploid 
M. anguillicaudatus with a size of 4.76 Gb, contig N50 of 6.78 Mb, and scaffold N50 of 44.11 Mb. We 
identified approximately 2.9 Gb (61.03% of genome) of repetitive sequences and predicted 91,485 
protein-coding genes. Moreover, allelic gene expression levels indicated the absence of significant 
dominant haplotypes within the autotetraploid loach genome. This genome will provide a valuable 
biological model for unraveling the mechanisms of polyploid formation and evolution, adaptation to 
environmental changes, and benefit for aquaculture applications and biodiversity conservation.

Background & Summary
Polyploidy is widely recognized as a pivotal mechanism that contributes significantly to genetic diversity, 
facilitates genomic restructuring and the evolution of novel traits in organisms1,2. In plants, comprehensive 
studies in polyploidy organisms have been investigated, including some model autotetraploid organisms, such 
as Saccharum spontaneum L3., Solanum tuberosum4 and “Zhongmu No.1” alfalfa5. However, our understand-
ing of polyploidy in vertebrates remains limited, as it is comparatively infrequent in this group of organisms6. 
Misgurnus anguillicaudatus is a small-size freshwater teleost, widely distributed in China, Japan, Korea and 
other Southeast Asian countries7. Cytogenetic investigations conducted on M. anguillicaudatus have revealed 
the presence of naturally occurring diploid, triploid, tetraploid, pentaploid, and hexaploid loach populations 
in China8. Among these polyploid loach, the natural tetraploid loach (4n = 100 chromosomes) appear with 
sympatric diploid loach (2n = 50 chromosomes) and they are regarded as a autotetraploid formed by chro-
mosome doubling9,10. The coexistence of diploid and autotetraploid individuals within this species makes it 
an exceptional model organism for investigating the evolutionary history and trajectory of polyploidization in 
vertebrates. However, the genomic data available for the loach is currently insufficient.

Here, we have successfully constructed a high-quality, haplotype-resolved, chromosome-level reference 
genome for the autotetraploid M. anguillicaudatus, employing a combination of Illumina short-read sequenc-
ing, PacBio long-read sequencing (Circular Consensus Sequencing, CCS), and Hi-C technologies. The reference 
genome created for autotetraploid M. anguillicaudatus bears significant importance in the fields of evolutionary 
biology, genomic stability research, aquaculture applications, and biodiversity conservation.
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Methods
Experimental fish and sequencing.  We firstly conducted karyotype analysis of an autotetraploid M. 
anguillicaudatus (female) obtained from the Aquaculture Base of College of Fisheries, Huazhong Agricultural 
University in Wuhan City, Hubei Province, China, and 100 chromosomes were divided into three types (meta-
centric chromosome (MC), submetacentric chromosome (SC) and acrocentric chromosome (AC)) according 
to the position of centromere (Fig. 1). Genomic DNA was extracted from muscle tissues of the autotetraploid 
M. anguillicaudatus for sequencing. All experimental protocols in this study were approved by the Animal 
Experimental Ethical Inspection of Laboratory Animal Center, Huazhong Agricultural University, Wuhan, China 
(HZAUFI-2022-0025). All efforts were made to minimize the suffering of the fish.

For genome survey, we utilized the Illumina TruSeq Nano DNA Library Prep Kit to construct a paired-end 
(PE) library, which was subsequently sequenced on the Illumina HiSeq X Ten platform, generating 150-bp read 
length sequences11. fastp (v 0.23.4) was performed to eliminate adaptors and low-quality reads from the raw 
data, resulting in a total of 242.72 Gb clean data (105.5 × coverage). These clean reads were then utilized to esti-
mate the genome size and heterozygosity (Table 1).

To perform de novo assembly of the autotetraploid M. anguillicaudatus genome, SMRT bell Template Prep 
Kit was employed to construct the library, which was subsequently sequenced on the PacBio Sequel II platform. 
After removing redundant reads, a total of 92.9 Gb HiFi reads (26.29 × coverage) with an average length of 
14,351.39 bp were obtained (Table 1).

For chromosome-level assembly of the autotetraploid M. anguillicaudatus genome, a Hi-C library was gen-
erated using the DpnII restriction enzyme and sequenced on the MGISEQ-T7 platform, resulting in 423.61 Gb 
(184.2 × coverage) of clean data after12 (Table 1).

For genome structure annotation, samples were taken from nine tissues of autotetraploid M. anguillicauda-
tus, including muscle, liver, fin, skin, eye, brain, gill, intestine, and ovary. These samples were mixed and sub-
jected to RNA sequencing for genome annotation. RNA-seq libraries were constructed following the protocol 
and sequenced on the Illumina NovaSeq6000 platform, generating a total of 5.17 Gb raw data. (Table 1).

De novo assembly of autotetraploid M. anguillicaudatus genome.  K-mer method was used 
to survey the genomic features of the autotetraploid M. anguillicaudatus13. Based on the total number of 
216,747,902,623 17-mers and a peak 17-mer depth of 93, estimated genome size and heterozygosity rate of the 
M. anguillicaudatus was 2,315 Mb and 1.38%, respectively. (Fig. 2 and Table s1). Subsequently, a total of 92.9 Gb 
HiFi and 423.61 Gb Hi-C reads were used for genome assembly using HiFiasm (v 0.16.1, default parameters)14, 
and then polished by Pilon (v 1.23)15 using the 242.72 Gb of Illumina HiSeq clean reads. Finally, we obtained a 
4,761 Mb genome with a contig N50 size of 6.78 Mb, consisting of 215 contigs (Table 2). Subsequently, the com-
pleteness of the assembly was assessed using BWA software (v 0.7.17, default parameters)16, which revealed that 
99.85% of the Illumina short reads could be mapped and covered 99.83% of the assembled genome (Table s2). We 
also assessed the assembly using Pacbio long reads with the minimap2 software (v 2.23, default parameters). The 
analysis showed that all reads were successfully mapped, covering 99.98% of the assembled genome17 (Table s2). 

Fig. 1  Autotetraploid Misgurnus anguillicaudatus (Female) and karyotype analysis.

Library types Insert size (bp) Raw data (Gb) Clean data (Gb) Read length (bp) Sequence coverage (X)

Illumina reads 350 253.85 242.72 150 105.5

PacBio reads (HiFi reads) 15000 92.9 / 14351.39 26.29

Hi-C reads 100–500 423.69 423.61 150 184.2

RNA reads 350 5.17 4.98 150

Table 1.  Sequencing data used for the genome autotetraploid Misgurnus anguillicaudatus assembly.
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Finally, the completeness of the genome assembly was assessed using BUSCO (v 4.1.3) with the actinopterygii_
odb10 database18. The analysis revealed that 96.81% of the genes were identified as complete, including 3.85% of 
single-copy genes and 92.97% of duplicated genes. Additionally, 0.36% of the genes were fragmented, and 2.83% 
were missing from the assembled genome (Table 3).

The Hi-C technique was employed to assemble the chromosome-level genome of autotetraploid M. anguil-
licaudatus19. Hi-C clean reads were mapped to the contig-level genome with an end-to-end algorithm imple-
mented in Bowtie (v 2.4.1, default parameters)20 following the Hi-C-Pro (v 2.11.1, default parameters)21 strategy. 
To anchor these contigs into chromosomes, Juicer (v 1.5.6, default parameters)22 and 3d-DNA (v 201008, default 
parameters)23 were utilized. Subsequently, juicebox (v 1.11.08, default parameters) was utilized to fix error-joins 
and remove duplicated contigs. Finally, the assembled sequences were anchored and orientated onto 100 
pseudo-chromosomes, covering 95.43% of the entire genome. The final chromosome-scale genome assembly of 
the autotetraploid M. anguillicaudatus was 4.76 Gb with a contig N50 of 6.78 Mb and scaffold N50 of 44.11 Mb 
(Figs. 3, 4; Table 3).

Repeat annotation.  De novo and homology-based approaches were used to identify the repetitive elements 
of the autotetraploid M. anguillicaudatus genome. Tandem Repeats Finder (http://tandem.bu.edu/trf/trf.html)24 
was used to extract tandem elements. For homology prediction, RepeatMasker (v 4.1.0, default parameters)25 and 
RepeatProteinMask (v 1.36, default parameters)26 were employed, using based the RepBase database (http://www.
girinst.org/repbase) as a reference. For ab initio prediction, RepeatModeler (v 2.0.1, default parameters)27 (http://
www.repeatmasker.org/RepeatModeler.html) and LTR-FINDER (v 1.07, default parameters) (http://tlife.fudan.
edu.cn/ltr_fnder/)28 were utilized to detect repetitive elements based on de novo repetitive element databases. 
Finally, we identified about 2.9 Gb (61.03%) of repetitive sequences in autotetraploid M. anguillicaudatus genome. 
Among these elements, DNA sequences were found to be the most abundant, comprising 38.48% of the genome. 
In contrast, SINEs were the least prevalent, making up only 0.84% of the genome (Table s3).

Fig. 2  17-kmer distribution in the autotetraploid Misgurnus anguillicaudatus genome.

Contig Length (bp) Contig Number Scaffold Length (bp) Scaffold Number

N90 13,60,784 772 3,61,33,691 93

N80 28,33,278 537 3,83,49,178 80

N70 39,67,880 395 4,09,09,013 68

N60 54,54,833 293 4,25,04,299 57

N50 67,82,996 215 4,41,14,842 46

Total length 4,76,07,08,595 — 4,76,08,41,395 —

Number(> = 100 bp) — 5,257 — 3,929

Number(> = 2 kb) 5,257 — 3,929

Max length 3,42,59,278 — 7,32,11,041 —

Table 2.  The statistics of length and number for the de novo assembled autotetraploid Misgurnus 
anguillicaudatus genome.
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Gene prediction and annotation.  Gene predictions were based on de novo prediction, homology-based 
annotation and transcriptome-based annotation. For the de novo prediction, Genscan (v 2003, parameters: 
HumanIso.smat)29 and Augustus (v 3.3.3, parameters:–species = zebrafish–uniqueGeneId = true–noIn-
FrameStop = true–gff3 = on–strand = both)30 were used to predict coding regions. For homology-based pre-
diction, the protein sequences from Sinocyclocheilus graham, Danio rerio, Carassius auratus and Cyprinus 
carpio genome were download from the public NCBI database (release 75) for aligning to the autotetraploid 
M. anguillicaudatus genome by BLAST + (v 2.9.0, e-value ≤ 10−5)31. Subsequently, GeneWise (v 2.4.1, default 
parameters)32 was used to identify gene structure of each protein region. For transcriptome-based annotation, 
the clean RNA-seq reads were from nine tissues mixed RNA samples (including muscle, liver, fin, skin, eye, brain, 
gill, intestine, and ovary) mapped onto the autotetraploid M. anguillicaudatus genome by using Tophat (v 2.1.1, 
default parameters)33. Cufflinks (v 2.2.1, default parameters) (http://cole-trapnell-lab.github.io/cufinks/)34 was 
applied for genome-based transcript assembly. Finally, MAKER (v 3.01.03)35 was used to integrate the results 
from the three methods (above-mentioned) and generate a final non-redundant gene set. In the autotetraploid 
M. anguillicaudatus genome, 92,500 protein-coding genes were predicted. The average gene length was 19,975 bp, 
while the average coding sequence (CDS) length was 1,668 bp. Each gene contains 9.44 exons with an average 
exon length of 220.16 bp and the introns length of 21,121 bp. It was worth mentioned that these gene model statis-
tics, encompassing gene, CDS, intron, and exon lengths, were observed to be similar to those observed in closely 
related species (Table s4 and Fig. s1). For non-coding RNAs annotation, tRNAscan-SE (v 1.3.1)36 was applied to 
search the tRNA. Based on the Rfam (v 14.0, parameters: cmscan–rfam–nohmmonly) database37, BLASTN was 
used to detect the microRNA and rRNA. Finally, we totally identified 5,742 miRNAs, 31,484 rRNAs and 38,281 
tRNAs (Table s5).

For gene functional annotations, InterProscan (v 5.55–88.0, parameters:–applications ProDom, PRINTS, 
Pfam, SMART, PANTHER, ProSiteProfiles–goterms–pathways)38 was used to screen proteins against InterPro 
database. GO (v 20171220, parameters: blastp -e-value 10−5)39, KEGG (v kobas-3.0, parameters: blastp -e-value 
10−5)40, NR (diamond:v 0.9.27, parameters: blastp -e-value 10−5)41, SwissProt (diamond:v 0.9.27, parameters: 
blastp -e-value 10−5)42 and TrEMBL databases (diamond:v 0.9.27, parameters: blastp -e-value 10−5)43 were 
used for gene functional annotations using BLAST + (v 2.9.0, e-value ≤ 10−5). A total of 91,485 genes (98.9%) 
were successfully annotated (Table s6). In addition, the completeness of the gene annotation of autotetraploid 
M. anguillicaudatus was further assessed by using BUSCO (actinopterygii_odb9 database) (v 4.1.3). Our analysis 
revealed that 98.4% of the complete genes and 0.3% of the fragmented genes out of the total 3,640 BUSCO genes 
were detected in the genome (Table s7).

Haplotype assembly.  Firstly, the diploid loach genome was used here44,45. By comparing the homologous 
gen sets from the autotetraploid loach and the diploid loach with jcvi (v 1.0.6, parameters: jcvi.compara.catalog 
ortholog-dbtype = prot-cscore 0.7; jcvi.compara.synteny screen-minspan = 30)46, we identified the single-copy 
homologous genes from corresponding chromosomes in five genomes (four from autotetraploid (h1, h2, 
h3 and h4 for short), and one from diploid (Mis for short)). For example, if we obtained about 500 groups of 
homologous genes on chromosome 1 (chr1 for short), it meant that each group consisted of five homologous 
genes (from autotetraploid (chr1-h1, chr1-h2, chr1-h3, chr1-h4) and diploid (Mis)). Secondly, all single-copy 
homologous genes were used to construct gene trees by raxml (v 1.2.0, parameters: raxmlHPC PTHREADS-f 
a-N 100-m GTRGAMMA)47. Finally, according to the corresponding chromosome, the gene trees were inte-
grated by Astral (v 5.6.3, default parameters), and the final consensus tree was used to distinguish haplotype 
chromosomes (Fig. s2)48. Moreover, we performed the collinearity analysis among diploid and four haplotype 
genomes using jcvi (v 1.0.6, parameters: jcvi.compara.catalog ortholog-dbtype = prot-cscore 0.99; jcvi.compara.
synteny screen-minspan = 30). A total of 65,387 gene pairs from diploid and autotetraploid genomes were iden-
tified and showed a high collinearity (Fig. s3). In order to evaluate the assembly quality of four haplotypes, we 
analyzed the GC content distribution, short-read depth distribution, long-read depth distribution, homozygous 
snp density distribution, heterozygous snp density distribution, homozygous indel density distribution and het-
erozygous indel density distribution (Figs. s4–s8). Above all results showed that we obtained four high-quality 
chromosome-level haplotypes from autotetraploid loach genome. Moreover, the Ks values of syntenic gene pairs 

Type Proteins Percentage (%)

Complete BUSCOs (C) 3,524 96.81

Complete and single-copy BUSCOs (S) 140 3.85

Complete and duplicated BUSCOs (D) 3,384 92.97

Fragmented BUSCOs (F) 13 0.36

Missing BUSCOs (M) 103 2.83

Total BUSCO groups searched 3,640 100

Hi-C analysis

Total Sequence Length (bp) 4,76,08,41,395

Contig N50 (bp) 67,82,996

Scaffold N50 (bp) 4,41,14,842

Chromosome anchoring rate (%) 95.43

Table 3.  Statistics of the assembled genome for the autotetraploid Misgurnus anguillicaudatus.
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between four haplotypes of autotetraploid loach and the diploid loach were calculated using ParaAT2.0 and 
KaKs_calculator 3.0 (default parameters), revealed a peak value of 0.03 for all four haplotypes49,50. Consistency in 
haplotype divergence was observed (Fig. s9).

Haplotype collinearity analysis.  Jcvi (v 1.0.6, parameters: jcvi.compara.catalog ortholog-dbtype = prot- 
cscore 0.99; jcvi.compara.synteny screen-minspan = 30) was used for collinearity analysis and visualization46 
(Fig. 5). All haplotype genomes showed high collinearity, which indicated our successful haplotype phasing and 
a high-quality chromosomal genome assembly. To detect the structural variations among the four haplotype 
genomes, whole-genome alignments was performed using MUMmer (v 4.0.0beta2)51. All alignment results 
between two allelic chromosome pairs were obtained using Nucmer (parameters: -c 500, -b 500, and -l 100) 
with the -maxmatch option51. Then, the alignment results were filtered using delta-filter (parameters: delta-filter 
-m -i 90 -l 100) and the results were converted into a tab-separated file using the show-coords (parameters: 
show-coords -THrd) subprogram. Finally, SyRI (v 1.6) was used to identify structural variations among the four 
haplotype genomes (Fig. s10)52.

Fig. 3  Circos plot of the autotetraploid Misgurnus anguillicaudatus genome assembly. The circos plot showing 
the 100 chromosomes in autotetraploid M. anguillicaudatus genome, h1-4 means the four haplotype genomes. 
From the outer to the inner layers: GC content, gene density, repeat coverage, LTR (long terminal repeats), LINE 
(long interspersed nuclear elements), DNA-TE (DNA-transposable elements) and genome collinearity.
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Haplotype expression analysis.  To identify collinear block gene pairs between allelic chromosomes, 
Jcvi (v 1.0.6, parameters: jcvi.compara.catalog ortholog-dbtype = prot-cscore 0.99; jcvi.compara.synteny 
screen-minspan = 30) was employed46. Manual curation was performed to eliminate collinear blocks that likely 
originated from whole genome duplication (WGD). Consequently, a total of 4,371 alleles were identified across all 
four haplotype genomes. For allelic expression analysis, the raw data of the brain, muscle, liver, and ovary tissues 
from female autotetraploid loach were downloaded from NCBI database (SRP accession number SRP293717, 
Table s8)53,54. RNA-seq clean reads were aligned to the four haplotype genomes separately using STAR (v 2.7.8a, 
default parameters)55. The normalized TPM values of each sample were estimated with RSEM (v 1.3.3, default 
parameters)56. Notably, our analysis revealed that no dominant haplotype was found among the four haplotype 
genomes. (Fig. 6, Figs. s11–s14).

Data Records
All raw data of the whole genome and assembled genome reported in this paper have been deposited in the 
Genome Warehouse in National Genomics Data Center57,58, Beijing Institute of Genomics, Chinese Academy 
of Sciences/China National Center for Bioinformation, under BioProject accession number PRJCA02475059. 
The genomic PacBio sequencing data accession number is CRR118467460, the Hi-C sequencing data accession 
number is CRR118467560. The assembled genome accession number are GWHERQI00000000 (haplotype 1)61,  
GWHERQL00000000(haplotype 2)62, GWHERQH00000000 (haplotype 3)63, GWHERQG00000000 

Fig. 4  Hi-C intra-chromosomal contact map of the autotetraploid Misgurnus anguillicaudatus genome 
assembly.
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(haplotype 4)64, that are publicly accessible at Genome Warehouse. The assembled genome was also deposited in 
the NCBI Genome with the accession number JBGGOFO00000000 (haplotype 1)65, JBGGOG000000000 (hap-
lotype 2)66, JBGGOHO00000000 (haplotype 3)67, JBGGOI000000000 (haplotype 4)68. The assembled genome 
can also be obtained from the figshare dataset at https://doi.org/10.6084/m9.figshare.26340437.v169. RNA 
sequencing data for transcriptome-based gene prediction were deposited in the SRA at NCBI SRR2930386470.

Technical Validation
RNA integrity.  In this study, nine tissues (including muscle, liver, fin, skin, eye, brain, gill, intestine, and 
ovary) were sampled from the autotetraploid M. anguillicaudatus and mixed for transcriptome sequencing. For 
constructing RNA-Seq libraries, the purity of RNA was analyzed by using NanoPhotometer Spectrophotometer 
(Implen, USA). Subsequently, the concentration and integrity of RNA were quantified by using Qubit 2.0 
Fluorometer (Life Technologies, USA) and Agilent Bioanalyzer 2100 (Agilent Technologies, USA), respectively. 
In this study, the spectrophotometer ratios (260 nm/280 nm) of all DNA were over 1.8. The quality of all purified 
RNA was evaluated by absorbance (260 nm/280 nm) >1.7 and the RNA integrity number >8. These high-quality 
DNA was finally subjected to construct the sequencing library.

Fig. 5  Haplotype collinearity analysis. h1-h4 representing the four haplotype genomes.

Fig. 6  Haplotype expression analysis. h1-h4 representing the four haplotype genomes. N = 4371 means all 
allelic genes.
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Code availability
All analyses were conducted on Linux systems. All softwares used in this work were in the public domain, with 
parameters being clearly described in Methods. If no detail parameters were mentioned for a software, default 
parameters were used as suggested by developer.
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