Zhang-Lab 生信小课堂 第十期 Applied Bioinformatics Club (ABC)

和趣求真 【 秉实生信

(张建伟生物信息学课题组 https://zhang.hzau.edu.cn)

同源基因鉴定

拥有物种蛋白质序列,如何鉴定物种间的同源基因? 2023.3.3 二综一楼C102 15:00 欢迎大家交流学习!

> 主讲人:李姗莹 2023/03/03

同源基因

Homologs(同源基因):由一个共同祖先在不同物种中遗传的基因。同源基因在序列上是相似的,但相似的序列不一定是同源的。

- ◆ Orthologs(直系同源基因):来自于不同物种的,从同一祖先垂直进 化而来的基因,保留了与原始基因有相同的功能。直系同源基因 通常是编码生命必需的酶、辅酶或关键性的调控蛋白的基因,功 能保守,进化缓慢。大多数直系同源基因功能相同或相近,调控 途径也相似,常用来构建系统发育树。
- ◆ Paralogs(旁系同源基因):由于基因复制而产生的同源基因,可能会进化出与原来基因相似的功能但是也可以进化成不同的特征,旁系同源基因并不局限于同一物种内,不同物种中由于始祖基因的复制而分化的基因也称旁系同源基因。
- ◆ xenologs(异同源基因):通过水平基因转移,来源于共生或病毒侵染 所产生的相似基因。异同源的产生不是垂直进化而来的,也不是 平行复制产生的,而是由于原核生物与真核生物的接触,比如病 毒感染,在跨度巨大的物种间跳跃转移产生的。

Orthologous or paralogous homologs?

Orthologs – diverged only after speciation – *tend to have similar function* Paralogs – diverged after gene duplication – *some functional divergence occurs*

Genetribe安装

需要依赖python3和三个工具使用 #BLAST (v2.9.0) conda install blast -c bioconda #MCscan (v1.0.6) pip install jcvi #BEDTools (v2.29.2) conda install bedtools -c bioconda

#Genetribe安装 git clone https://github.com/chenym1/genetribe.git cd genetribe ./install.sh vi ~/.bash_profile # add the following lines to the end of ~/.bash_profile export PATH=/path/to/genetribe/:\$PATH source ~/.bash_profile genetribe -h

GeneTribe

A tool for performing collinearity-incorporating homology inference

官网: https://chenym1.github.io/genetribe/

Yongming Chen, Wanjun Song, Xiaoming Xie, Zihao Wang, Panfeng Guan, Huiru Peng, Yuannian Jiao, Zhongfu Ni, Qixin Sun, and Weilong Guo. (2020) A Collinearity-incorporating Homology Inference Strategy for Connecting Emerging Assemblies in Triticeae Tribe as a Pilot Practice in the Plant Pangenomic Era. Molecular Plant, 13, 1694–1708.

Genetribe输入文件

File1 Protein Sequences in Fasta Format (name.fa)

>AT5G16970.1 pep chromosome:TAIR10:5:5575973:5578086:-1 gene:AT5G16970 transcript:AT5G16970.1 gene_biotype:protein_coding transcript_biotype:protein_coding gene_symbol:AER descri
ption:alkenal reductase [Source:NCBI gene (formerly Entrezgene);Acc:831560]
MTATNKQVILKDYVSGFPTESDFDFTTTTVELRVPEGTNSVLVKNLYLSCDPYMRIRMGK
PDPSTAALAQAYTPGQPIQGYGVSRIIESGHPDYKKGDLLWGIVAWEEYSVITPMTHAHF
KIQHTDVPLSYYTGLLGMPGMTAYAGFYEVCSPKEGETVYVSAASGAVGQLVGQLAKMMG
CYVVGSAGSKEKVDLLKTKFGFDDAFNYKEESDLTAALKRCFPNGIDIYFENVGGKMLDA
VLVNMNMHGRIAVCGMISQYNLENQEGVHNLSNIIYKRIRIQGFVVSDFYDKYSKFLEFV
LPHIREGKITYVEDVADGLEKAPEALVGLFHGKNVGKQVVVVARE
>AT4G32100.1 pep chromosome:TAIR10:4:15511757:15512218:-1 gene:AT4G32100 transcript:AT4G32100.1 gene_biotype:protein_coding transcript_biotype:protein_coding gene_symbol:AT4G3210
0 description:Beta-1,3-N-Acetylglucosaminyltransferase family protein [Source:NCBI gene (formerly Entrezgene);Acc:829341]
MATNACKFLCLVLLFAFVTQGYGDDSYSLESLSVIQSKTGNMVENKPEWEVKVLNSSPCY
FTHTTLSCVRFKSVTPIDSKVLSKSGDTCLLGNGDSIHDISFKYVWDTSFDLKVVDGYIA
CS

File2 Annotation File in Bed Format (name.bed)

File3 Chromosome Group Information (name.chrlist)

1	3630	5899	AT1G01010	Θ	+
1	6787	9130	AT1G01020	0	
1	11648	13714	AT1G01030	Θ	
1	23120	31227	AT1G01040	Θ	+
1	31169	33171	AT1G01050	Θ	
1	33364	37871	AT1G01060	Θ	
1	38443	41017	AT1G01070	Θ	
1	44969	47059	AT1G01080	Θ	
1	47233	49304	AT1G01090	Θ	
1	49908	51210	AT1G01100	Θ	
1	51952	54737	AT1G01110	Θ	+
1	57163	59215	AT1G01120	Θ	
1	61904	63811	AT1G01130	Θ	
1	64165	67774	AT1G01140	Θ	
1	69910	72138	AT1G01150	Θ	
1	72338	74096	AT1G01160	Θ	+

Genetribe使用

#BSUB -J genetribe
#BSUB -n 10
#BSUB -o genetribe.%J.out
#BSUB -e genetribe.%J.err
#BSUB -R span[hosts=1]
#BSUB -q smp

<mark>core</mark>

Usage: genetribe core -I <FirstName> -f <SecondName> [options] genetribe core -I Physcomitrium_patens -f Arabidopsis_thaliana

longestcds

Usage: genetribe longestfasta -i pep.fa -s strsplit genetribe longestfasta -i Physcomitrium_patens.fa -s strsplit

Genetribe结果

Arabidonsis thaliana bod	Arabidonsis thaliana Physcomitrium natens one20ne	Physcomitrium patens Arabidopsis thaliana SBH
	A abidopsis_inditiond_myscomitrium_patens.one20ne	Tryscomit Tum_butens_Alubidopsis_thutidne.obh
Arabidopsis_thaliana.cds	Arabidopsis_thaliana_Physcomitrium_patens.SBH	Physcomitrium_patens_Arabidopsis_thaliana.singleton
Arabidopsis_thaliana.chrlist	Arabidopsis_thaliana_Physcomitrium_patens.singleton	Physcomitrium_patens.bed
Arabidopsis_thaliana.fa	Arabidopsis_thaliana.TAIR10.54.gff3	Physcomitrium_patens.cds
<pre>Arabidopsis_thaliana.longestcds.fa</pre>	Physcomitrium_patens_Arabidopsis_thaliana.block_pos	Physcomitrium_patens.chrlist
<pre>Arabidopsis_thaliana_Physcomitrium_patens.block_pos</pre>	Physcomitrium_patens_Arabidopsis_thaliana.one2many	Physcomitrium_patens.fa
<pre>Arabidopsis_thaliana_Physcomitrium_patens.csv</pre>	Physcomitrium_patens_Arabidopsis_thaliana.one2one	Physcomitrium_patens.longestcds.fa
<pre>Arabidopsis_thaliana_Physcomitrium_patens.one2many</pre>	Physcomitrium_patens_Arabidopsis_thaliana.RBH	Physcomitrium_patens.Phypa_V3.54.gff3

AT1G10630	Pp3c12_14910	0.97
AT1G69550	Pp3c5_6380	0.80
AT3G22930	Pp3c14_8590	0.80
AT5G03240	Pp3c18_2470	0.98
AT1G07920	Pp3c1_23850	0.94
AT3G55590	Pp3c8_17380	0.78
AT3G11940	Pp3c23_6150	0.88
AT5G60670	Pp3c27_660	0.89
AT2G34420	Pp3c10_3020	0.76
AT1G55060	Pp3c5_1920	0.98
AT3G09790	Pp3c19_8830	0.98
AT1G49300	Pp3c2_24890	0.80
AT2G47170	Pp3c4_20580	0.95
AT2G29570	Pp3c12_18160	0.84
AT1G61580	Pp3c10 25460	0.82

LG01050	Pp3c13_16700	RBH	Ν
LG01230	Pp3c11_20050	RBH	Ν
LG01620	Pp3c13_18810	RBH	Ν
LG01940	Pp3c14_5290	RBH	Ν
LG02140	Pp3c1_16440	RBH	Ν
LG02500	Pp3c19_3060	RBH	Ν
LG03150	Pp3c10_6780	RBH	Ν
LG03190	Pp3c10_16570	RBH	Ν
LG03330	Pp3c2_19710	RBH	Ν
LG03950	Pp3c13_6090	RBH	Ν
LG04170	Pp3c7_5020	RBH	Ν
LG04270	Pp3c12_9180	RBH	Ν
1604300	Pn3c12_920	RRH	N

AT: AT:

AT AT AT

AT AT

AT AT

AT AT

one2one (RBH+SBH)

Orthofinder

Orthofinder安装

#1.canda安装 conda install -c bioconda orthofinder orthofinder -h

#2.直接调用集群 module load OrthoFinder/2.3.8

Emms, D. and Kelly, S. (2015). OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biology 16: 157 Emms, D. and Kelly, S. (2019). OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology 20: 238

Orthofinder

Orthofinder使用

```
#BSUB -J orthofinder
#BSUB -n 10
#BSUB -o orthofinder.%J.out
#BSUB -e orthofinder.%J.err
#BSUB -R span[hosts=1]
#BSUB -q smp
```

```
orthofinder -f orthofinder/ -t 2
```

```
$ orthofinder -f data \ # 数据目录
    -S diamond \ # 比对blast, mmseqs, blast_gz, diamond (推荐)
    -M msa \ # 基因树推断方法, dendroblast, msa (推荐)
    -T fastatree \ # 建树软件, iqtree, raxml-ng, fasttree (推荐), raxml
    -t 6 \ # 线程数, 根据服务器配置选择
```


Orthofinder

Orthofinder结果

Inparanoid

Inparanoid安装

#blastall conda install -c bioconda blast-legacy=2.2.26

#Inparanoid wget https://bitbucket.org/sonnhammergroup/inparanoid4/get/359f8ea484ba.zip unzip 359f8ea484ba.zip perl inparanoid

blast parser.pl	BL0SUM62	EC	LICENSE	PAM70	SC
BLOSUM45	BLOSUM80	inparanoid.pl	PAM30	README.txt	seqstat.jar

InParanoid 7: new algorithms and tools for eukaryotic orthology analysis" Ostlund G, Schmitt T, Forslund K, Kostler T, Messina DN, Roopra S, Frings O and Sonnhammer ELL Nucleic Acids Res. 38:D196-D203 (2009)

Inparanoid

Inparanoid使用

第一步:建库 formatdb -i Arabidopsis_thaliana.fa

第二步:运行Inparanoid Usage:perl inparanoid.pl <FASTAFILE with sequences of species A> <FASTAFILE with sequences of species B> [FASTAFILE with sequences of species C] perl inparanoid.pl Arabidopsis_thaliana.pep.fa Arabidopsis_thaliana.pep.fa

Inparanoid

Inparanoid结果文件

1	5042	Arabidopsis thaliana.longest.fa	1.000	AT2G17930
1	5042	Arabidopsis thaliana.longest.fa	0.677	AT4G36080
1	5042	Physcomitrium patens.longest.fa	1.000	Pp3c17 20000
2	4552	Arabidopsis thaliana.longest.fa	1.000	AT1G80070
2	4552	Physcomitrium_patens.longest.fa	1.000	Pp3c8_25090
2	4552	Physcomitrium_patens.longest.fa	0.859	Pp3c24_20910
3	4420	Arabidopsis thaliana.longest.fa	1.000	AT3G02260
3	4420	Physcomitrium_patens.longest.fa	1.000	Pp3c11_22340
3	4420	Physcomitrium_patens.longest.fa	0.646	Pp3c7_7030
4	3973	Arabidopsis_thaliana.longest.fa	1.000	AT5G23110
4	3973	Physcomitrium_patens.longest.fa	1.000	Pp3c9_15860
5	3381	Arabidopsis_thaliana.longest.fa	1.000	AT1G48090
5	3381	Physcomitrium_patens.longest.fa	1.000	Pp3c9_20320
6	3289	Arabidopsis_thaliana.longest.fa	1.000	AT1G03060
6	3289	Arabidopsis_thaliana.longest.fa	0.608	AT4G02660
6	3289	Physcomitrium_patens.longest.fa	1.000	Pp3c6_26100
6	3289	Physcomitrium_patens.longest.fa	0.700	Pp3c5_2897
6	3289	Physcomitrium_patens.longest.fa	0.700	Pp3c5_2890
6	3289	Physcomitrium_patens.longest.fa	0.096	Pp3c16_11700
6	3289	Physcomitrium_patens.longest.fa	0.096	Pp3c16_11705
7	3270	Arabidopsis_thaliana.longest.fa	1.000	AT5G53460
7	3270	Physcomitrium_patens.longest.fa	1.000	Pp3c5_20080
7	3270	Physcomitrium_patens.longest.fa	0.364	Pp3c16_19110
8	3263	Arabidopsis_thaliana.longest.fa	1.000	AT1G20960
8	3263	Arabidopsis_thaliana.longest.fa	0.314	AT2G42270
8	3263	Physcomitrium_patens.longest.fa	1.000	Pp3c1_35880
9	3252	Arabidopsis_thaliana.longest.fa	1.000	AT1G55860
9	3252	Arabidopsis_thaliana.longest.fa	0.851	AT1G70320
9	3252	Physcomitrium_patens.longest.fa	1.000	Pp3c11_25020
9	3252	Physcomitrium_patens.longest.fa	0.705	Pp3c7_8070
9	3252	Physcomitrium_patens.longest.fa	0.700	Pp3c7_8076
10	3078	Arabidopsis_thaliana.longest.fa	1.000	AT2G26890
10	3078	Physcomitrium_patens.longest.fa	1.000	Pp3c13_3460
10	3078	Physcomitrium_patens.longest.fa	0.601	Pp3c4_24650

<pre>27628 sequences in file Arabidopsis_thaliana.longest.fa 32234 sequences in file Physcomitrium_patens.longest.fa 18952 sequences Arabidopsis_thaliana.longest.fa have homologs in dataset Physcomitrium_patens.longest.fa 17039 sequences Physcomitrium_patens.longest.fa have homologs in dataset Arabidopsis_thaliana.longest.fa 83594 Arabidopsis_thaliana.longest.fa-Arabidopsis_thaliana.longest.fa matches 64463 Physcomitrium_patens.longest.fa-Physcomitrium_patens.longest.fa matches 74792 groups of orthologs 11860 in-paralogs from Arabidopsis_thaliana.longest.fa 13766 in-paralogs from Physcomitrium_patens.longest.fa 6479 group 0 bits Score cutoff 40 bits In-paralogs with confidence less than 0.05 not shown Sequence overlap cutoff 0.5 Group merging cutoff 0.5 Scoring matrix BLOSUM62 ####################################</pre>									
Group of orthologs #1 Score difference with AT2G17930 AT4G36080	. Best score 5042 first non-orthol 100.00% 67.69%	bits ogous sequence - Pp3c17_20000	Arabidopsis_thaliana.longest 100.00%	.fa:5042	Physcomitrium_patens.longest.fa:5042				
Group of orthologs #2 Score difference with AT1G80070	. Best score 4552 first non-orthol 100.00%	bits ogous sequence - Pp3c8_25090 Pp3c24_20910	Arabidopsis_thaliana.longest 100.00% 85.87%	.fa:228	Physcomitrium_patens.longest.fa:4552				
Group of orthologs #3 Score difference with AT3G02260	. Best score 4420 first non-orthol 100.00%	bits ogous sequence - Pp3c11_22340 Pp3c7_7030	Arabidopsis_thaliana.longest 100.00% 64.65%	.fa:4420	Physcomitrium_patens.longest.fa:4420				
Group of orthologs #4 Score difference with AT5G23110	. Best score 3973 first non-orthol 100.00%	bits ogous sequence - Pp3c9_15860	Arabidopsis_thaliana.longest 100.00%	.fa:3973	Physcomitrium_patens.longest.fa:3973				
Group of orthologs #5 Score difference with AT1G48090	. Best score 3381 first non-orthol 100.00%	bits ogous sequence - Pp3c9_20320	Arabidopsis_thaliana.longest 100.00%	.fa:3381	Physcomitrium_patens.longest.fa:3381				

Stats

官网:http://chibba.pgml.uga.edu/mcscan2/#tm github:https://github.com/wyp1125/MCScanx

#blast conda install blast2.2.31

#MCScanX wget https://codeload.github.com/wyp1125/MCScanX/zip/refs/heads/master unzip master cd MCScanX-master # master解压出来文件名是MCScanX-mastercd MCScanX Make

Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H, Kissinger JC, Paterson AH. (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res, 40(7): e49.

MCScanX使用

第一步: blastp (protein-protein BLAST) 比对 #合并 cat at.fa vv.fa >> all.fasta #建库 makeblastdb -in all.fa -dbtype prot -parse_seqids -out all #蛋白比对 blastp -query all.fa -db all -out at_vv.blast -evalue 1e-10 -num_threads 16 -outfmt 6 -num_alignments 5

第二步:运行MCScanX input files: at_vv.gff; at_vv.blast MCScanX at_vv/

AT1G50920	AT1G50920	100.00	671	0	0	1	671	1	671	0.0	1316	at3	AT3G19630	6818676 6820674	
AT1G50920	AT1G10300	75.33	673	149	3	1	671	30	687	0.0	985				
AT1G50920	AT1G80770	27.24	290	204	3	62	349	147	431	2e-27	120	at5	AT5G11220	3577057 3577854	
AT1G50920	AT3G23860	35.68	185	102	6	6	179	6	184	9e-18	88.6	at2	AT2G29110	12506880	12510552
AT1G50920	AT1G78010	25.11	219	136	8	171	382	320	517	1e-06	52.0		10000	CO24022 CO25440	
AT1G36960	AT1G36960	100.00	181	0	0	1	181	1	181	9e-72	265	at3	AT3G19/90	68/493/ 68/5440	
AT1G36960	AT5G36228	53.52	71	33	0	8	78	108	178	2e-17	84.7	at3	AT3G60770	22460525	22461656
AT1G36960	AT5G25600	60.61	66	25	1	11	76	111	175	8e-17	82.8		10001570	7600007 7600707	
AT1G36960	AT1G48095	77.53	89	20	0	89	177	117	205	2e-14	75.5	ats	AT3G21570	/60029/ /600/0/	
AT1G36960	AT1G48095	80.65	31	6	0	46	76	18	48	1e-08	55.8	at5	AT5G07420	2349547 2351366	
AT1G36960	AT2G02103	53.97	63	29	0	16	78	116	178	2e-13	71.6	-+4	304012020	7010001 7010710	
AT1G36960	AT5G18636	53.97	63	29	0	16	78	116	178	3e-13	71.2	at4	AT4G12030	/210981 /212/13	
AT1G44020	AT1G44020	100.00	577	0	0	1	577	1	577	0.0	1134	at2	AT2G15010	6484422 6485001	
AT1G44020	AT1G44020	100.00	577	0	0	1	577	1	577	0.0	1134	at2	AT2G15010	6484422 6485001	

MCScanX结果

[Usage] MCScanX prefix fn [options]

- -k MATCH_SCORE, final score=MATCH_SCORE+NUM_GAPS*GAP_PENALTY
 (default: 50)
- -g GAP_PENALTY, gap penalty (default: -1)
- -s MATCH_SIZE, number of genes required to call a collinear block
 (default: 5)
- -e E_VALUE, alignment significance (default: 1e-05)
- -m MAX_GAPS, maximum gaps allowed (default: 25)
- -w OVERLAP_WINDOW, maximum distance (# of genes) to collapse BLAST matches (default: 5)
- -a only builds the pairwise blocks (.collinearity file)
- -b patterns of collinear blocks. 0:intra- and inter-species (default); 1:intra-species; 2:inter-species
- -h print this help page

结果文件:at_vv.html, <mark>at_vv.collinearity</mark>, at_vv.tandem

MATCH SCORE: 50 # MATCH SIZE: 5 # GAP_PENALTY: -1 # OVERLAP WINDOW: 5 # E VALUE: 1e-05 # MAX GAPS: 25 # Number of collinear genes: 24437, Percentage: 47.49 # Number of all genes: 51452 ## Alignment 0: score=8972.0 e value=0 N=190 at1&at1 plus 0- 0: AT1G17240 AT1G72300 0 0- 1: AT1G17290 AT1G72330 0 0- 2: AT1G17310 AT1G72350 5e-41 AT1G72420 2e-113 0- 3: AT1G17350 0- 4: AT1G17380 AT1G72450 7e-63 0- 5: AT1G17400 AT1G72490 2e-82 0- 6: AT1G17420 AT1G72520 0 0- 7: AT1G17430 AT1G72620 1e-143 0- 8: AT1G17455 AT1G72630 1e-53

MCScanX结果可视化

Input files: at_vv.gff; at_vv.collinearity; dot.ctl

dot.ctl

800 //dimension (in pixels) of x axis 800 //dimension (in pixels) of y axis sb1,sb2,sb3,sb4,sb5,sb6,sb7,sb8,sb9,sb10 //chromosomes in x axis os1,os2,os3,os4,os5,os6,os7,os8,os9,os10,os11,os12 //chromosomes in y axis

#BSUB -J dot_plotter
#BSUB -n 10
#BSUB -o dot_plotter.%J.out
#BSUB -e dot_plotter.%J.err
#BSUB -R span[hosts=1]
#BSUB -q normal

java dot_plotter -g at_vv.gff -s at_vv.collinearity -c dot.ctl -o dot.PNG

MCScanX结果可视化

input files: at_vv.gff; at_vv.collinearity; dual_synteny.ctl

dual_synteny.ctl

600 //plot width (in pixels) 800 //plot height (in pixels) sb1,sb2 //chromosomes in the left column os1,os2,os3 //chromosomes in the right column

```
#BSUB -J dual_synteny_plotter
#BSUB -n 10
#BSUB -o dual_synteny_plotter.%J.out
#BSUB -e dual_synteny_plotter.%J.err
#BSUB -R span[hosts=1]
#BSUB -q normal
```

java dual_synteny_plotter -g at_pp.gff -s at_pp.collinearity -c dual_synteny.ctl -o dual_synteny.PNG

MCScanX结果可视化

800 //plot width and height (in pixels) sb1,sb2,os1,os2,os3 //chromosomes in the circle

#BSUB -J circle_plotter
#BSUB -n 10
#BSUB -o circle_plotter.%J.out
#BSUB -e circle_plotter.%J.err
#BSUB -R span[hosts=1]
#BSUB -q normal

java circle_plotter -g at_vv.gff -s at_vv.collinearity -c circle.ctl -o circle.PNG

